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Abstract—This paper presents a methodology to distinguish
between three-phase faults and GOOSE cyber attacks, aimed at
opening the circuit breakers in the power grid. We propose a
scheme that utilizes Phasor Measurement Unit (PMU)-enabled
monitoring of power grid states, and communication network
packet logs in the substation. In this scheme, by leveraging both
cyber and physical data correlations and applying a Seasonal
Autoregressive Moving Average (SARMA) model, we
successfully distinguish between 3-phase faults and cyber
attacks. The proposed scheme is tested using the benchmark
IEEE 9-bus system, and can distinguish cyber attacks from
faults in less than 0.2s. This demonstrates the usefulness of the
proposed scheme for power system cyber security analytics.
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I.  INTRODUCTION

The electrical power system is undergoing a paradigm
shift due to the energy transition and digitalisation. Thereby,
it is being transformed into a complex Cyber-Physical System
(CPS). This CPS offers numerous advantages, but also
introduces cyber security issues. This is a real-world threat, as
demonstrated by the cyber attacks on the power grid in
Ukraine in 2015 and 2016 that led to power outages [1].
Hence, cyber security of power grids is of paramount
importance. Under a faulted condition in the power system,
protection relays detect and clear the fault by opening the
associated circuit breakers. However, the communication
infrastructure inside a substation can be exploited to force a
malicious trip or opening of circuit breakers, even in the
absence of any electrical fault. Such an attack threat is already
shown by the aforementioned cyber attacks in Ukraine.
Distinguishing these two situations is a challenging task due
to the multi-domain nature of the problem, involving both
cyber and physical elements.

Electrical fault signatures are well-studied and can be
effectively captured by physical models of the power system.
However, detection of stealthy cyber attacks within
substations is non-trivial if purely based on physical power
system measurements. Likewise, as noted in [2], detection or
fingerprinting of cyber attacks at the bay level is a challenge.
This is due to the differences between substation Operational
Technology (OT) network traffic volumes at the bay and
station level.

In related work, general model-driven and data-driven
anomaly detection techniques that use measurements to detect
anomalous behaviour in the power system operation are
discussed in [3]. Also, intrusion detection methods that utilize
communication packets to detect anomalous behaviour are
presented in [4]. However, these works solely focus on the
physical and cyber aspects, respectively. In [5] and [6], a
detailed comparison is performed for power system
disturbance and cyber attack discrimination using Machine

Learning (ML). The authors consider PMU measurements and
use network logs collected through SNORT and Syslog.
Hence, actual network traffic flows are not considered.
Furthermore, as also concluded by the authors, these
supervised ML techniques require large datasets with labels,
making them difficult to deploy in the control centre. In [2],
the authors studied three types of cyber attacks including
Denial-of-Service (DoS) and Manufacturing Messaging
Specification (MMS) in a digital substation and investigate
packet modification. However, they inspect features of
individual packets, resulting in a significant overhead in the
detection process. Hence, they are unsuitable for near real-
time detection. In [7], PMU measurements are used to detect
bad or missing data using LSTM. A deep auto-encoder and
ridge classifier are trained based on PMU and captured MMS
packets, respectively in order to diagnose the root cause of the
failure. However, this work only considers component failures
inside a substation and not actual electrical faults, i.e., short-
circuits. Hence, correlations between cyber-physical system
data for distinction between power system faults and cyber
attacks is an open problem that our research seeks to address.

In this paper, we propose a data-driven scheme to

distinguish between normal operations, three-phase faults, and
stealthy cyber attacks targeting IEC 61850 in digital
substations. This scheme can be implemented in a utility
control centre for fast detection and distinction between these
system modes. The scientific contributions of this work are as
follows:

1. Formulating a data-driven architecture for detection
and distinction between three-phase faults and cyber
attacks in digital substations.

2. Application of the proposed architecture for
situational awareness in cyber-physical power
systems.

Following the intuition in this paper, one can devise similar
schemes for distinguishing different types of faults and cyber
attacks on power systems.
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Fig. 1. Digital substation architecture. The cyber attacks in this paper focus
on the bay and station level, indicated by the red symbols.



II. PROBLEM STATEMENT

Figure 1 depicts the architecture of a typical digital
substation, based on the IEC 61850 standard considered in this
paper. In the following sections, we briefly describe the type
of cyber attack investigated in this paper and formally define
the distinction problem, respectively.

A. TEC 61850 Cyber Attacks

Digital substations utilize TEC 61850 standard for
communicating measurements and commands in the
substation. Cyber security shortcomings in the standard, such
as lack of encryption and authentication, makes digital
substations vulnerable to cyber attacks. In this work, we
consider the spoofing of IEC 61850 traffic, encapsulated as
layer-2 Ethernet frames, within a digital substation. In the [EC
61850 standard, the Generic Object Oriented Substation Event
(GOOSE) protocol is used to communicate control
commands, such as trip or block, between Intelligent
Electrical Devices (IEDs).

The GOOSE data payload contains the breaker statuses
and circuit breaker controls. In the processing algorithm of
GOOSE frames, the sequence number, i.e., sqNum, is
continuously incremented with every sent GOOSE frame,
while the status number is fixed. This holds true under normal
operating conditions, wherein all GOOSE messages are
communicated within a predefined time T ~ 100 to 5000 ms.
In case of a substation event or fault, the status number, i.e.,
StNum, is changed by one and the sequence number is reset
to zero. Furthermore, these event mode GOOSE frames are
sent at a high rate of 0.5 to 5 ms. Consequently, by spoofing
these event mode GOOSE frames, relays can be maliciously
tripped, leading to unwanted opening of circuit breakers. This
may result in disconnection of transmission lines or even
generators.

The malicious spoofing does not cause changes to physical
PMU measurements such as voltages and currents, unlike an
electrical fault. This forms the rationale for the proposed
distinction scheme of this paper. As illustrated in Figure 1, in
the considered attack scenario, the attacker compromises the
substation network switch, which interconnects the bay level
devices including protection relays to substation level devices.
Thus, the attacker is able to inject spoofed GOOSE messages,
resulting in physical damages. A more detailed description of
this type of cyber attack vector can be found in [8].

B. Distinction Problem

In the event of a transmission line fault, distance relays
detect and trip to open circuit breakers to clear the fault. With
communication-assisted protection, these relays also store and
send the event details back to the control centre. However, as
described in subsection II A, cyber attacks may cause the
protection relay to trip in the absence of an actual fault event.
This may result in misperception of the event as a fault in the
control centre. In this study, we consider seven possibilities of
a circuit breaker state: 1) it opens maliciously due to cyber
attacks, as defined in I A; 2) it opens due to protection actions
against faults; 3) it does not open due to the absence of fault;
4) it opens due to relay or circuit breaker malfunction when
there is no fault; 5) it does not open due to a malfunction when
there is a fault. 6) it opens due to remote operation by system
operators via Supervisory Control and Data Acquisition
(SCADA) system; 7) it does not open because of the
malfunction of the SCADA system when the operator sends
the open command.

Amongst these possibilities, we are interested in
distinguishing between case 1 and case 2/3. Formally put, in a
power system with » number of substations, in case of a circuit
breaker opening in substation i, we aim to find out whether it
is due to a regular fault or a cyber attack. Cases 4 and 5 are
related to the reliability of protection equipment, outside the
scope of this work. Also, cases 6 and 7 are excluded from this
study since we focus on the automatic action of the relays, and
not manual intervention by human operators. In the following
subsections, we elucidate a few key assumptions considered
in this paper, before proceeding to the proposed distinction
approach.

C. Assumptions

First, we assume that the Phasor Measurement Unit
(PMU) data collected from substations are not subject to cyber
attacks, i.e., the integrity of PMU data is assured. Second, we
assume that the GOOSE information is also periodically sent
to the control centre SCADA system at a rate of 1-2 Hz using
Routable-GOOSE (R-GOOSE), as described in [9]. Within
the substation, network traffic data is logged, every 100 ms.
Furthermore, the PMUs are optimally placed in terms of
power system observability [10], such that the control centre
has access to instant values of the phasors at each substation.
Finally, it is important to assume that the power system does
not destabilise, in case of a short-duration three-phase fault or
in case of a line outage, e.g., N-1 contingency.

III. DISTINCTION METHODOLOGY

A. Proposed Distinction Scheme

As shown in Figure 2, the proposed detection and
distinction module is implemented in the control centre. The
inputs are the real-time PMU measurements from the Phasor
Data Concentrator (PDC), logged GOOSE packet traffic as
described above, and circuit breaker status at substation i. The
GOOSE packet traffic rate reflects the inner dynamics and
behaviour of the OT communication system at the bay level
of substation i. Hence, its observation may reveal ongoing
cyber events, i.e., provides cyber situational awareness. In
case of a substation bay level event, i.e., relay trip or block,
there should be strong correlation between the observed
anomalies or deviations in the GOOSE network traffic and
observed electrical fault signatures. In the absence of the
latter, there is a high chance of a GOOSE spoofing cyber
attack, as defined in Section II A. This is the rationale behind
the proposed scheme depicted in Figure 3.
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Fig. 2. Proposed fault and cyber attack distinction architecture.



The proposed data-driven distinction module is comprised
of fault detection and cyber anomaly detection blocks, both of
which produce binary outputs, fed to the decision making

block. Our objective is to design the functions F(¢) and C,(f)

for fault detection and cyber anomaly detection, respectively.
The decision making function for substation 7 is defined as:

1, ifF(@)=0, C()=1, and S,(1) =1

0, otherwise

Am={ (1)

where S (¢) € {0,1} is the circuit breaker state at substation 7
at time ¢.

1) Cyber Anomaly Detection using SARMA

OT communication traffic within a substation follows a
less stochastic behaviour, in comparison to IT network traffic.
This is due to the time-critical nature of the underlying
physical processes. Therefore, such a pattern or behaviour can
be learnt and then used in the cyber anomaly detection block
from Figure 2. The Auto-Regressive Moving Average
(ARMA) is one of the most widely used methods to linearly
model and predict stationary univariate time-series [11].
Stationarity of a time-series refers to time-independence of the
properties of such time-series, i.e., mean and variance [12]. If
{x(k)},keZ, is a discrete-time stationary and univariate

time-series, its ARMA model will be of the form:

X(k)=c+Ox(k=1)+...+0,x(k—p)

)
+e(k)+ce(k=D)+...+c,e(k—m)

inwhich ¢, 6 to 6, and ¢, to ¢, areparameters to be learnt,
£(t) is a white noise signal, and X(¢) is the prediction at time

t, while p and m are the autoregressive and moving average
orders, respectively. However, this model cannot capture the
seasonality, i.e., a pattern that repeats over n time periods. This
is clearly seen through Figure 3 that depicts the GOOSE
packet traffic in this study under normal condition.
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Fig. 3. Observed seasonality in GOOSE network traffic.

To overcome the non-stationarity imposed by the
seasonality in the data, we use the Seasonal ARMA
(SARMA). In SARMA, a seasonal difference
a(x(t)—x(t—q)) term is added to (1), where « is a linear
coefficient to be learnt and ¢ is the seasonal moving average
order. The maximum likelihood via Kalman filter is used to fit
the parameters of the SARMA model. Using the trained

SARMA model, the function C(¢) for anomaly detection is
designed as the difference of the predicted value and real value
at time ¢, with 7 being the threshold to be designed. This
difference is called the residue signal.

L if |x@)—-x(t)| 2T
co-{g e ! ®
0, otherwise

2) Fault Detection

The three-phase fault is the most severe and commonly
reported type of fault in transmission systems [13]. The post-
fault voltage in case of a 3-phase or 3-phase to ground fault
is computed as:

ne
Vi =—"— )
Z, +Zf

where Z; is the fault impedance, V} is pre-fault voltage at the
node/terminal and Z; is the positive-sequence impedance. In
the above expression, Z; is a variable, while, Z; and V; are
typically known to a utility. Therefore, we evaluate the
maximum/minimum of Vy with regard to Z:

av,  Z )
z, 7 +Z,

Hence, the minimum and maximum post-fault voltages are
functions of the fault and positive-sequence impedance.
Typically in transmission systems Z; >> Z;, thereby, Vs €
{0.5,0.7} p.u [13]. Therefore, we design the function F,(¢)

for fault detection, as follows:

£m=% it7 5], [>T, ©

0, otherwise

in which y,(¢) is the bus voltage phasor measurement of
substation i, with the thresholds 7, =0.5 and 7, =0.7.

IV. CASE STUDY AND SIMULATION RESULTS

The benchmark IEEE 9-bus system is used to test the
proposed distinction method between faults and spoofed
GOOSE cyber attacks. A dataset is created consisting of one
normal operation scenario, three fault scenarios, i.e., three-
phase short-circuit, on different lines with different durations,
and one spoofing cyber attack scenario of GOOSE data
frames. This is achieved using a hardware-in-the-loop testbed
consisting of Real-Time Digital Simulator (RTDS) interfaced
with real IEDs and a network switch [10]. This is
representative of the digital substation bay level. The fault
locations are depicted in Figure 4. The cyber attack scenario
is executed on substation 1 represented in Figure 4. The IED
in this figure represents a distance protection relay. Also, we
assume there are six PMUSs, each of which is placed on buses
4-9 that measure voltage phasors in each phase.
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Fig. 6. Voltage phasors for three scenarios at bus 6.

Figure 5 depicts the GOOSE traffic under normal, fault,
and cyber attack conditions. We observe that the normal and
cyber attack cases are almost indistinguishable, rendering the
detection of cyber attack a complicated task. Fig 6. shows the
voltage magnitudes at bus 6 for the three scenarios, i.e., fault
at bus 6-9, fault at bus 5-7, and a cyber attack at bus 6. It can
be seen that in case of a fault in the power system, the bus
voltage drops between 0.7 and 0.4 p.u. This is a similar case
for others buses. The red dotted line depicts the upper
threshold, i.e., 0.7 p.u. The correlations between GOOSE
traffic and voltages for fault and cyber attack cases, in Figures
5 and 6 depict the distinction between a fault and cyber attack.

The autocorrelation of the GOOSE packet flow signal
shows that the seasonality of this time series is 20 steps, i.e., it
repeats every 2 seconds and can be observed in Figure 7.
Hence, we set ¢ = 20. This seasonality can also be seen from
the periodic traffic pattern, as previously shown in Figure 3.
Furthermore, by empirically setting p =5 and m = 0, we obtain

a good fit with the lowest mean square error. The SARMA
model is trained with 250 out of 300 samples of the normal
operation traffic data. The remaining 50 samples are
subsequently used to test the trained model. The mean square
error of this trained model is 0.36. Figure 8 illustrates the
performance of the trained model on the 50 remaining test
samples. The threshold T is empirically set to be 3.5 packets
per 100 ms based on previous observations of the traffic rate
in the normal case. Also, in this experiment i = 1.
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Fig. 7. Autocorrelation of GOOSE traffic time-series.
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Fig. 8. Performance of the trained SARMA model.

Using the trained SARMA model, we apply the proposed
scheme to the fault and attack scenarios. In Figures 9 and 10,
in case of a fault occurrence and relay action, both the
functions C () =1and F,(t)=1in under a second. On the

other hand, during the cyber attack, only the network traffic
rate deviates from the prediction at some time instance,
wherein C (r)=1 and F(r)=0.

In the cyber attack scenario, the attack starts from the
beginning of the simulation, and after 8.47 seconds the circuit
breaker connected to the IED in substation 1 opens. As
depicted in Figure 11, this does not have a severe effect on the
PMU measurements. However, immediately after this event,
before the circuit breaker closes again, the cyber anomaly
detection block detects an anomaly at around 8.6 seconds from
the beginning of the simulation. Since S§,(¢f)=1 and

F.(t)=0, a cyber attack alarm is generated by the decision

making block. The overall time from circuit breaker opening
until generating the cyber attack alarm is about 130 ms as
marked in Figure 11. It is important to note, the performance
of the proposed method is unaffected by the PMU
communication latencies. These are typically in the order of
40-50 ms [14], sufficiently less than the moving window for
detection used in our paper, i.e., ~1 s.
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Fig. 11. Distinction results under the cyber attack scenario.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a scheme for real-time distinction
between GOOSE cyber attacks in digital substations and
three-phase electrical faults in the power grid. It utilizes the
SARMA model and PMU measurements and GOOSE traffic
in order to make a decision about the cause of a circuit
breaker opening in a digital substation. From the
experimental results, it is shown that this scheme can
distinguish the cyber attacks and faults in less than 200 ms.

One limitation of the proposed scheme is that it needs an
offline training stage based on normal operational GOOSE
traffic. In future work, we will derive an online method to
eliminate the offline learning. Furthermore, the existing
methods such as the Receiver Operating Characteristic (ROC)
curve, help find the optimal value for the threshold 7 to have
a minimum false positive rate. This will be the focus of our
future research.
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